MODULE - IV

UNSYMMETRICAL BENDING

BENDING OF CURVED BEAMS

INTRODUCTION TO ENERGY METHODS

UNSYMMETRICAL BENDING

UNSYMMETRICAL BENDING

UNSYMMETRICAL BENDING

MOMENT OF INERTIA OF AN AREA:

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{xx}}=\int_{\mathrm{A}} \mathrm{y}^{2} \mathrm{dA} \\
& \mathbf{I}_{\mathrm{yy}}=\int_{\mathrm{A}} \mathrm{x}^{2} \mathrm{dA}
\end{aligned}
$$

The first two integrals are known as moment of inertia of area about x and y axis respectively.

*They are called so because of the similarity with integrals that define the mass moment of inertia of bodies in the field of dynamics. Since an area cannot have an inertia, the terminology moment of inertia of an area is a misnomer. This terminology for the above integral has become a common usage.

UNSYMMETRICAL BENDING

MOMENT OF INERTIA OF AN AREA:

$$
I_{\mathrm{xy}}=\int_{\mathrm{A}} \mathrm{xydA}
$$

The above integral is called product of inertia. Its sign can be positive or negative.

$$
\mathbf{J}=\int_{\mathbf{A}} \mathbf{r}^{2} \mathbf{d A}
$$

The above integral is called polar moment of inertia of the area.

It is the moment of an area about an axis perpendicular to the x and y axis. Polar moment of inertia of an area is the sum of moment of inertia about x and y axis.

UNSYMMETRICAL BENDING

Moment of Inertia of some common Area:

1. Rectangle:

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{xx}}=\frac{\mathrm{bh}^{3}}{12} & \mathrm{~J}_{\mathrm{o}}=\frac{\mathrm{bh}^{3}+\mathrm{hb}^{3}}{12} \\
\mathrm{I}_{\mathrm{yy}}=\frac{\mathrm{hb}^{3}}{12} & \mathrm{I}_{\mathrm{xy}}=0
\end{array}
$$

2. Right Triangle:

$$
\begin{array}{ll}
I_{x x}=\frac{b^{3}}{36} & J_{0}=\frac{b^{3}+h^{3}}{36} \\
I_{y y}=\frac{h^{3}}{36} & I_{x y}=\frac{b^{2} h^{2}}{72}
\end{array}
$$

24th January 2019
Presented to S4 ME students of RSET by Dr. Manoj G Tharian

UNSYMMETRICAL BENDING

3. Circle:

$$
\begin{array}{ll}
I_{x x}=\frac{\pi D^{4}}{64}=\frac{\pi R^{4}}{4} & J_{0}=\frac{\pi D^{4}}{32}=\frac{\pi R^{4}}{2} \\
I_{y y}=\frac{\pi D^{4}}{64}=\frac{\pi R^{4}}{4} & I_{x y}=0
\end{array}
$$

UNSYMMETRICAL BENDING

PARALLEL AXIS THEOREM:

$$
\begin{aligned}
& I_{x^{\prime} x^{\prime}}=I_{x x}+A \bar{y}^{2} \\
& \mathbf{I}_{\mathrm{y}^{\prime} \mathrm{y}^{\prime}}=\mathbf{I}_{\mathrm{yy}}+\mathbf{A} \overline{\mathbf{x}}^{2} \\
& \mathrm{~J}_{0^{\prime}}=\mathrm{J}_{\mathrm{o}}+\mathrm{A} \overline{\mathbf{r}}^{2} \\
& \mathrm{I}_{\mathrm{x} \prime y^{\prime}}=\mathrm{I}_{\mathrm{yx}}+\mathrm{A} \overline{\mathrm{x}} \overline{\mathrm{y}}
\end{aligned}
$$

UNSYMMETRICAL BENDING

TRANSFORMATION EQUATIONS:

The moments of inertia given with respect to a given set of coordinates xy can be transformed to a new set of coordintes $x^{\prime} y^{\prime}$ which makes an angle θ with respect to original set of co ordinates xy can be done using the following transformation equations

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{x} / \mathrm{x}^{\prime}}=\mathrm{I}_{\mathrm{xx}} \operatorname{Cos}^{2} \theta+\mathrm{I}_{\mathrm{yy}} \operatorname{Sin}^{2} \theta-\mathrm{I}_{\mathrm{xy}} \operatorname{Sin} 2 \theta \\
& \mathbf{I}_{\mathrm{y}^{\prime} \mathrm{y}^{\prime}}=\mathbf{I}_{\mathrm{xx}} \operatorname{Sin}^{2} \theta+\mathrm{I}_{\mathrm{yy}} \operatorname{Cos}^{2} \theta+\mathbf{I}_{\mathrm{xy}} \operatorname{Sin} 2 \theta \\
& \mathbf{I}_{\mathrm{x} / \mathrm{y}^{\prime}}=\frac{\mathrm{I}_{\mathrm{xx}}-\mathrm{I}_{\mathrm{yy}}}{2} \operatorname{Sin} 2 \theta+\mathrm{I}_{\mathrm{xy}} \operatorname{Cos} 2 \theta
\end{aligned}
$$

UNSYMMETRICAL BENDING

Note the similarity between the transformation equations for moments and products of inertia and the transformation equations of stress.

There are two values of θ for which $\mathrm{I}_{\mathrm{xy}}=0$.
These two axes X1X1 \& Y1Y1 for which $\mathrm{I}_{\mathrm{xy}}=0$ are called principal axes.

An axis of symmetry will always be a principal axis.

UNSYMMETRICAL BENDING

$$
\begin{aligned}
& \tan 2 \theta=\frac{2 I_{\mathrm{Xy}}}{\mathrm{I}_{\mathrm{XX}}-\mathrm{I}_{\mathrm{YY}}} \\
& \mathrm{I}_{\mathrm{X} 1 \mathrm{X} 1}=\frac{\mathrm{I}_{\mathrm{XX}}+\mathrm{I}_{\mathrm{YY}}}{2}+\sqrt{\left(\frac{\mathrm{I}_{\mathrm{XX}}-\mathrm{I}_{\mathrm{YY}}}{2}\right)^{2}+\mathrm{I}_{\mathrm{XY}}{ }^{2}} \\
& \mathrm{I}_{\mathrm{Y} 1 \mathrm{Y} 1}=\frac{\mathrm{I}_{\mathrm{XX}}+\mathrm{I}_{\mathrm{YY}}}{2}-\sqrt{\left(\frac{\mathrm{I}_{\mathrm{XX}}-\mathrm{I}_{\mathrm{YY}}}{2}\right)^{2}+\mathrm{I}_{\mathrm{XY}}{ }^{2}}
\end{aligned}
$$

$\mathrm{I}_{\mathbf{X 1 X} 1}$ represents maximum moment of inertia and $\mathrm{I}_{\mathrm{Y} 1 \mathrm{Y} 1}$ represents minimum moment of inertia.

UNSYMMETRICAL BENDING

Symmetrical Bending: In the case of symmetrical bending, it is essential that the plane containing one of the principal axis of inertia, the plane of applied moment and the plane of deflection should coincide. The neutral axis will coincide with the other principal axis of inertia.

UNSYMMETRICAL BENDING

UNSYMMETRICAL BENDING

24th January 2019
Presented to S4 ME students of RSET by Dr. Manoj G Tharian

UNSYMMETRICAL BENDING

A cantilever of angle is 1 m long and is fixed at one end, while it is subjected to a load of 3 kN at the free end at 20° to the vertical. Calculate the bending stress at A, B and C and also the position of neutral axis.

24th January 2019

UNSYMMETRICAL BENDING

Locating the centroid of the cross section

SI. No	b (mm)	h (mm)	Area $\left(\mathrm{mm}^{2}\right)$	$\overline{\mathbf{X}}$	$\overline{\mathbf{y}}$	First Moment about x axis	First Moment about y axis
1	100	10	1000	50	95	95000	50000
2	10	90	900	5	45	40500	4500
		Sum:	1900		Sum:	135500	54500
	$\overline{\mathbf{X}}:$						

Fresermed io 34 ivic students of RSET
by Dr. Manoj G Tharian

UNSYMMETRICAL BENDING

Moment of inertia about the centroidal axis of the cross section:

SI. No	b	h	Area	$\overline{\mathrm{x}}$	$\overline{\mathrm{y}}$	I_{xx} about local centroid	I_{yy} about local centroid	I_{xx} about global centroid	I_{yy} about global centroid
1	100	10	1000	21.3	23.7	8333.33	833333.3	570023.3	1287023
2	10	90	900	23.7	-26.3	607500	7500	1230021	513021
			1900					1800044	1800044

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{Xx}}=\frac{\mathrm{bh}^{3}}{12} & \mathrm{I}_{\mathrm{XX}}=\mathrm{I}_{\mathrm{xx}}+\mathrm{A} \overline{\mathbf{Y}}^{2} \\
\mathrm{I}_{\mathrm{yy}}=\frac{\mathrm{hb}^{3}}{12} & \mathrm{I}_{\mathrm{YY}}=\mathrm{I}_{\mathrm{yy}}+\mathrm{A} \overline{\mathbf{x}}^{2}
\end{array}
$$

Presented to S4 ME students of RSET by Dr. Manoj G Tharian

UNSYMMETRICAL BENDING

Product of inertia (I_{XY}) about the centroidal axis of the cross section:

SI. No	b	h	Area	\bar{X}	\bar{y}	$I_{X Y}$ about global centroid (mm
1	100	10	1000	21.3	23.7	504810
2	10	90	900	-23.7	-26.3	560979
			1900			1065789

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{xy}}=0 \\
& \mathrm{I}_{\mathrm{XY}}=\mathrm{I}_{\mathrm{xy}}+\mathrm{A} \bar{x} \overline{\mathrm{y}}
\end{aligned}
$$

24th January 2019

Presented to S4 ME students of RSET by Dr. Manoj G Tharian

UNSYMMETRICAL BENDING

Finding Principal Axis:

$$
\tan 2 \theta=\frac{2 \mathrm{I}_{\mathrm{xy}}}{\mathrm{I}_{\mathrm{XX}}-\mathrm{I}_{\mathrm{YY}}}
$$

$$
\mathrm{I}_{\mathrm{X} 1 \mathrm{X} 1}=\frac{\mathrm{I}_{\mathrm{XX}}+\mathrm{I}_{\mathrm{YY}}}{2}+\sqrt{\left(\frac{\mathrm{I}_{\mathrm{XX}}-\mathrm{I}_{\mathrm{YY}}}{2}\right)^{2}+\mathrm{I}_{\mathrm{XY}}^{2}} \quad \begin{aligned}
& \mathrm{I}_{\mathrm{X} 1 \mathrm{X} 1}=2865833 \mathrm{~mm}^{4} \\
& \mathrm{I}_{\mathrm{Y} 1 \mathrm{Y} 1}=734255 \mathrm{~mm}^{4}
\end{aligned}
$$

$$
I_{Y 1 Y} 1=\frac{I_{X X}+I_{Y Y}}{2}-\sqrt{\left(\frac{I_{X X}-I_{Y Y}}{2}\right)^{2}+I_{X Y}^{2}}
$$

$$
\mathrm{y}_{1} \quad \uparrow^{\mathrm{y}} \quad \mathrm{x}_{1}
$$

UNSYMMETRICAL BENDING

Coordinates of a point With reference to Principal Axis

UNSYMMETRICAL BENDING

Coordinates of $A B$ \& With reference to
Principal Axis

$$
\begin{aligned}
& X 1=X \operatorname{Cos} \theta+Y \operatorname{Sin} \theta \\
& Y 1=Y \operatorname{Cos} \theta-X \operatorname{Sin} \theta
\end{aligned}
$$

Point	X	Y	X 1	Y 1
A	-28.7	-71.31	-70.71	-30.13
B	-28.7	28.7	0	40.59
C	71.31	28.7	70.71	-30.13

UNSYMMETRICAL BENDING

Components of Moments along X1Z plane and Y1Z plane:

UNSYMMETRICAL BENDING

Components of Moments along X1Z plane and Y1Z plane:

UNSYMMETRICAL BENDING

Stresses due to bending:

$$
\sigma=\frac{\mathbf{M}_{\mathrm{X} 1 \mathrm{X} 1}}{\mathrm{I}_{\mathrm{X} 1 \mathrm{X} 1}} \mathrm{y} 1+\frac{\mathbf{M}_{\mathrm{Y} 1 \mathrm{Y} 1}}{\mathrm{I}_{\mathrm{Y} 1 \mathrm{Y} 1}} \mathrm{X} 1
$$

24th January 2019
Presented to S4 ME students of RSET by Dr. Manoj G Tharian

UNSYMMETRICAL BENDING

Neutral Axis:
A1

$$
\begin{aligned}
& \frac{\mathrm{M}_{\mathrm{X} 1} \mathrm{y} 1}{\mathrm{I}_{\mathrm{X} 1 \mathrm{x} 1}}+\frac{\mathrm{M}_{\mathrm{y} 1} \mathrm{X} 1}{\mathrm{I}_{\mathrm{y} 1 \mathrm{y} 1}}=0 \\
& \tan \beta=\frac{\mathrm{y} 1}{\mathrm{x} 1}=-\frac{\mathrm{M}_{\mathrm{Y} 1} \mathrm{I}_{\mathrm{X} 1 \mathrm{X} 1}}{\mathrm{M}_{\mathrm{X} 1} \mathrm{I}_{\mathrm{y} 1 \mathrm{y} 1}} \\
& \begin{aligned}
\tan \beta & =\frac{\mathrm{y} 1}{\mathrm{z} 1}=-\frac{-2719000 \times 2865833}{1268000 \times 734255} \\
& =-8.37
\end{aligned}
\end{aligned}
$$

UNSYMMETRICAL BENDING

Summary:

Locate the Centroid of the cross section.
Draw x \& y axis throug

BENDING OF CURVED BEAMS-

WINCKLER BACH FORMULA

BENDING OF CURVED BEAMS

Consider a curved beam subjected to bending moment M .

BENDING OF CURVED BEAMS

O is the initial centre of curvature of the beam.

CC is the trace of the layer through the centroid.
ρ_{0} is the radius of curvature of the centroidal axis CC

BENDING OF CURVED BEAMS

Red chain line shows the trace of neutral layer.
r_{0} is the radius of curvature of the neutral axis.
e is the radial distance between the centroidal axis and neutral axis.

BENDING OF CURVED BEAMS

24th January 2019

Presented to S4 ME students of RSET by Dr. Manoj G Tharian

BENDING OF CURVED BEAMS

BENDING OF CURVED BEAMS

BENDING OF CURVED BEAMS

Consider the bending of a beam which is initially curved. Let an arbitrary length encloses an angle $\Delta \Phi$. Owing to the moment M , the section AB rotates through an angle $\delta \Delta \Phi$ and occupies a position A'B'
$\rho_{0} \quad-\quad$ initial radius of curvature.
$\mathrm{r}_{0} \quad-\quad$ radius of curvature of the neutral surface.
r - final radius of curvature of neutral surface.
SN - Trace of neutral layer.
Assume that the sections which are plane before bending remains plane after bending.

BENDING OF CURVED BEAMS

Hence a transverse section rotates about the neutral axis.
The section $A B$ rotates about the neutral axis NN. Fibers above the neutral layer gets compressed and fibers below the neutral layer gets stretched. The length of fibers in the neutral layer remains unaltered.

Consider a fiber at a distance y from the neutral surface. The unstretched length before bending is $\left(r_{0}-y\right) \Delta \Phi$.

Change in length due to bending is $y \delta \Delta \Phi$.

BENDING OF CURVED BEAMS

The strain is negative for positive y, for the moment shown in
figure,

$$
\text { Strain } \quad \varepsilon_{\mathrm{x}}=-\frac{\mathrm{y} \delta \Delta \Phi}{\left(\mathrm{r}_{0}-\mathrm{y}\right) \Delta \Phi}-1
$$

The quantity y remains unaltered during bending. From the figure,

$$
\mathbf{S N}=(\Delta \Phi+\delta \Delta \Phi) \mathbf{r}
$$

Also from the figure $\quad S N=r_{0} \Delta \Phi$
This implies, $\quad(\Delta \Phi+\delta \Delta \Phi) r=r_{0} \Delta \Phi$

$$
\frac{\delta \Delta \Phi}{\Delta \Phi}=\frac{\mathrm{r}_{0}}{\mathrm{r}}-1 \quad \frac{\delta \Delta \Phi}{\Delta \Phi}=\mathrm{r}_{0}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{r}_{0}}\right)-2
$$

BENDING OF CURVED BEAMS

Substituting in eqn. 1 we get,

$$
\varepsilon_{x}=-\frac{y}{\left(r_{0}-y\right)} r_{0}\left(\frac{1}{r}-\frac{1}{r_{0}}\right)-3
$$

Assuming that only σ_{x} exist,

$$
\begin{align*}
& \sigma_{\mathrm{x}}=\mathrm{E} \varepsilon_{\mathrm{x}} \\
& \sigma_{\mathrm{x}}=-\frac{E y}{\left(\mathrm{r}_{0}-\mathrm{y}\right)} \mathrm{r}_{0}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{r}_{0}}\right)
\end{align*}
$$

For equilibrium, the resultant of σ_{x} the area has to be zero. The resultant moment of σ_{x} about NN is equal to the applied bending moment.

BENDING OF CURVED BEAMS

$$
\begin{aligned}
& \int_{A} \sigma_{x} d A=0 \\
& -E r_{0}\left(\frac{1}{r}-\frac{1}{r_{0}}\right) \int_{A} \frac{y d A}{\left(r_{0}-y\right)}=0 \\
& \int_{A} \frac{y d A}{\left(r_{0}-y\right)}=0 \\
& -\int_{A} \sigma_{x} y d A=M \\
& E r_{0}\left(\frac{1}{r}-\frac{1}{r_{0}}\right) \int_{A} \frac{y^{2} d A}{\left(r_{0}-y\right)}=M \\
& E r_{0}\left(\frac{1}{r}-\frac{1}{r_{0}}\right)\left[-\int_{A} y d A+r_{0} \int_{A} \frac{y d A}{\left(r_{0}-y\right)}\right]=M
\end{aligned}
$$

BENDING OF CURVED BEAMS

$$
\begin{aligned}
\int_{A} \frac{y^{2} d A}{\left(r_{0}-y\right)} & =\int_{A} \frac{-r_{0} y+y^{2}+r_{0} y}{\left(r_{0}-y\right)} d A \\
& =\int_{A} \frac{-r_{0} y+y^{2}}{\left(r_{0}-y\right)} d A+\int_{A} \frac{r_{0} y}{\left(r_{0}-y\right)} d A \\
& =\int_{A} \frac{-y\left(r_{0}-y\right)}{\left(r_{0}-y\right)} d A+r_{0} \int_{A} \frac{y}{\left(r_{0}-y\right)} d A \\
& =\int_{A}-y d A+r_{0} \int_{A} \frac{y}{\left(r_{0}-y\right)} d A
\end{aligned}
$$

BENDING OF CURVED BEAMS

In the above equation, the first integral is the moment of the section w.r.t. the neutral axis and is equal to -Ae.

Where, A is the cross sectional area and e is the distance to the centroid from the neutral axis and this moment is negative.

The second integral is zero.

$$
E r_{0}\left(\frac{1}{r}-\frac{1}{r_{0}}\right) A e=M
$$

Substituting from eq. 4 we get

BENDING OF CURVED BEAMS

$$
\begin{aligned}
& -\frac{\sigma_{x}\left(r_{0}-y\right)}{y} \text { A.e }=M \\
& \boldsymbol{\sigma}_{\mathrm{x}}=\frac{-\mathbf{M}}{\mathbf{A} \cdot \mathbf{e}} \cdot \frac{\mathbf{y}}{\mathbf{r}_{0}-\mathbf{y}} \\
& \int_{A} \frac{y d A}{\left(r_{0}-y\right)}=0 \\
& \mathbf{u}=\mathbf{r}_{\mathbf{0}}-\mathbf{y} \\
& \int_{A} \frac{r_{0}-u}{u} d A=0 \longmapsto \int_{A} \frac{r_{0}}{u} d A=\int_{A} d A \\
& \longmapsto \mathbf{r}_{0} \int_{\mathrm{A}} \frac{1}{\mathbf{u}} \mathbf{d A}=\mathbf{A} \quad \mathbf{r}_{0}=\frac{\mathrm{A}}{\int_{\mathrm{A}} \mathrm{dA} / \mathrm{U}}
\end{aligned}
$$

BENDING OF CURVED BEAMS

RECTANGULAR SECTIONS

$$
r_{0}=\frac{\mathrm{h}}{\operatorname{Ln}\left(\mathrm{r}_{2} / \mathrm{r}_{1}\right)}
$$

Presented to S4 ME students of RSET by Dr. Manoj G Tharian

BENDING OF CURVED BEAMS

TRAPEZOIDAL SECTIONS

$$
\mathbf{r}_{\mathbf{0}}=\frac{\frac{1}{2} \mathbf{h}^{2}\left(\mathbf{b}_{\mathbf{1}}+\mathbf{b}_{2}\right)}{\left(\mathbf{b}_{1} \mathbf{r}_{2}-\mathbf{b}_{2} \mathbf{r}_{\mathbf{1}}\right) \ln \frac{\mathbf{r}_{2}}{\mathbf{r}_{\mathbf{1}}}-\mathbf{h}\left(\mathbf{b}_{\mathbf{1}}-\mathbf{b}_{2}\right)}
$$

BENDING OF CURVED BEAMS

CIRCULAR SECTION

$$
\mathrm{r}_{0}=\frac{1}{2}\left(\rho_{0}+\sqrt{\rho_{0}^{2}-\mathrm{a}^{2}}\right)
$$

BENDING OF CURVED BEAMS

Determine the maximum tensile stress and maximum compressive stress across section $A A$ of the member shown in fig. Load $P=19620 \mathrm{~N}, \mathrm{a}=8 \mathrm{~cm}$

24th January 2019

BENDING OF CURVED BEAMS

BENDING OF CURVED BEAMS

$$
\begin{aligned}
& M=19620 \times(30+80+80)=3727800 \mathrm{~N}-\mathrm{mm} \\
& \rho_{0}=80+30=110 \mathrm{~mm} \\
& \mathbf{r}_{0}=\frac{\mathrm{h}}{\operatorname{Ln}\left(\mathbf{r}_{2} / \mathbf{r}_{1}\right)} \quad \mathrm{r}_{0}=\frac{60}{\operatorname{Ln}(140 / 80)}=107.22 \mathrm{~mm} \\
& e=\rho_{0}-r_{0}=110-107.22=2.78 \mathrm{~mm}
\end{aligned}
$$

Area, $A=60 \times 40=2400 \mathrm{~mm}^{2}$

BENDING OF CURVED BEAMS

At C,
Stress due to bending is given by $\left(\sigma_{x}{ }^{\prime}\right)_{C}=-\frac{M}{A \cdot e} \cdot \frac{y}{\left(r_{0}-y\right)}$
Stress due to load P is given by $\quad\left(\sigma_{x}{ }^{\|}\right)_{C}=\frac{P}{\text { Area }}$
At $\mathrm{C}, \mathrm{y}=\mathbf{- 3 2 . 7 8 \mathrm { mm } \text { , }}$

$$
\begin{aligned}
& \left(\sigma_{\mathrm{x}}^{\prime}\right)_{\mathrm{C}}=-\frac{3727800}{2400 \times 2.78} \cdot \frac{-32.78}{(107.22+32.78)}\left(\sigma_{\mathrm{x}}^{\prime}\right)_{\mathrm{C}}=130.82 \mathrm{MPa} \\
& \left(\sigma_{x}^{\|}\right)_{\mathrm{C}}=\frac{19620}{2400} \quad\left(\sigma_{\mathrm{x}}^{\|}\right)_{\mathrm{C}}=-8.175 \mathrm{MPa} \\
& \left(\sigma_{x}\right)_{\mathrm{C}}=\left(\sigma_{x}^{\prime}\right)_{\mathrm{C}}+\left(\sigma_{x}^{\prime}\right)_{\mathrm{C}}=122.65 \mathrm{MP}
\end{aligned}
$$

BENDING OF CURVED BEAMS

At D,
Stress due to bending is given by $\left(\sigma_{x}{ }^{\prime}\right)_{D}=-\frac{M}{A \cdot e} \cdot \frac{y}{\left(r_{0}-y\right)}$
Stress due to load P is given by $\quad\left(\sigma_{x}{ }^{\|}\right)_{D}=\frac{P}{\text { Area }}$
At $\mathrm{D}, \mathrm{y}=27.22 \mathrm{~mm}$,
$\left(\sigma_{\mathrm{x}}{ }^{\prime}\right)_{\mathrm{D}}=-\frac{3727800}{2400 \times 2.78} \cdot \frac{27.22}{(107.22+27.22)} \quad\left(\sigma_{\mathrm{x}}^{\prime}\right)_{\mathrm{D}}=-190.11 \mathrm{MPa}$
$\left(\sigma_{x}{ }^{\|}\right)_{\mathrm{D}}=\frac{19620}{2400} \quad\left(\sigma_{\mathrm{x}}{ }^{\|}\right)_{\mathrm{D}}=-8.175 \mathrm{MPa}$
$\left(\sigma_{x}\right)_{\mathrm{D}}=\left(\sigma_{x}\right)_{\mathrm{D}}+\left(\sigma_{x}^{\prime}\right)_{\mathrm{D}}=198.3 \mathrm{MPa}$

BENDING OF CURVED BEAMS

$$
\begin{array}{ll}
A=17.5 \mathrm{~cm}^{2} & M=19 P \\
r_{0}=5.204 \mathrm{~cm} & \left(\sigma_{\mathrm{x}}^{\prime}\right)_{\mathrm{D}}=120148 \mathrm{kPa} \\
\mathrm{x}=\frac{\left(\mathrm{b}_{1}+2 \mathrm{~b}_{2}\right) \mathrm{h}}{3\left(\mathrm{~b}_{1}+\mathrm{b}_{2}\right)} & \left(\sigma_{\mathrm{x}}\right)_{\mathrm{D}}=136907 \mathrm{k} \mathrm{~Pa} \\
\rho_{0}=5.80 \mathrm{~cm} & \\
e=0.596 \mathrm{~cm} &
\end{array}
$$

STRAIN ENERGY OF DEFORMATION:

STRAIN ENERGY OF DEFORMATION

STRAIN ENERGY OF DEFORMATION:

1. Strain energy of deformation -
a) special cases of a body subjected to concentrated loads
b) due to axial force
c) shear force
d) bending moment
e) Torque
2. Reciprocal relation -Maxwell reciprocal theorem

STRAIN ENERGY OF DEFORMATION:

Energy Methods are widely used for solving Elastic Problems.

Energy is a scalar quantity, so energy methods are also called scalar methods / Lagrangian Mechanics.

Legrangian Mechanics - principle of conservation of energy.
Newtonian Mechanics - static equilibrium equations.
Energy methods are useful in solving indeterminate problems, members subjected to impact loads, instability problems.

24th January 2019

Presented to S4 ME students of RSET by Dr. Manoj G Tharian

STRAIN ENERGY OF DEFORMATION:

Strain Energy:

When a body undergoes deformation under the action of externally applied forces, the work done by these forces s stored as strain energy inside the body which can be recovered when the later is elastic in nature.

Strain energy of a member is defined as the increase in energy associated with the deformation of a member. The strain energy density of a material is expressed as strain energy per unit volume.

Strain energy density is equal to the area under the stress-strain diagram.

STRAIN ENERGY OF DEFORMATION:

Consider an infinitesimal element subjected to normal stress.

The force acting on the two faces $=\sigma_{x} \cdot d y . d z$.
Elongation of the element due to this force $=\varepsilon_{x} \cdot d x$.
The average force during the elongation $=\left(\sigma_{x} \cdot d y \cdot d z\right) / 2$.

24th January 2019
Presented to S4 ME students of RSET by Dr. Manoj G Tharian

STRAIN ENERGY OF DEFORMATION:

This average force multiplied by the distance through which it acts is the work done on the element.

For a perfectly elastic body no energy is dissipated and the work done on the element is stored as recoverable internal strain energy.

Strain energy U for an infinitesimal element subjected to uniaxial stress is

$$
\begin{aligned}
& \mathrm{du}=\frac{1}{2} \cdot \sigma_{x} \cdot \mathrm{dy} \cdot \mathrm{dz} \times \varepsilon_{x} \cdot \mathrm{~d} x=\frac{1}{2} \cdot \sigma_{x} \cdot \varepsilon_{x} \cdot \mathrm{dV} \\
& \text { AveragerForce distance }
\end{aligned}
$$

Where dv is the volume of the element.

STRAIN ENERGY OF DEFORMATION:

Strain energy stored per unit volume or strain energy density is given by

$$
\mathbf{U}_{0}=\frac{1}{2} \cdot \sigma_{x} \cdot \varepsilon_{x}
$$

Presented to S4 ME students of RSET by Dr. Manoj G Tharian

STRAIN ENERGY OF DEFORMATION:

Complimentary Strain Energy:

STRAIN ENERGY OF DEFORMATION:

Modulus of resilience and Toughness:

24th January 2019
Presented to S4 ME students of RSET by Dr. Manoj G Tharian

STRAIN ENERGY OF DEFORMATION:

1. Strain Energy due to Axial Force:

Extension
Consider a bar of length ' L ' and cross sectional area ' A '. The bar is stretched when tensile forces are applied. The graph of Force versus extension is usually a straight line as shown in fig. When the force reaches a value ' F ' the corresponding extension be ' x '

STRAIN ENERGY OF DEFORMATION:

Work done by the force $=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{F x}$
Strain energy stored, $U=\frac{1}{2} F X=\frac{1}{2} \sigma \varepsilon A L$
(because $\sigma=\frac{\mathrm{F}}{\mathrm{A}}$ and $\varepsilon=\frac{\mathrm{x}}{\mathrm{L}}$)

$$
\mathrm{U}=\frac{1}{2} \sigma \varepsilon \mathrm{x} \text { Volume }
$$

In general, strain energy, $\mathbf{U}=\int_{\mathbf{V}} \frac{1}{2} \sigma \varepsilon d V$
Within the proportionality limit, $\boldsymbol{\varepsilon}=\frac{\boldsymbol{\sigma}}{\mathbf{E}}$
Where E is the Young's modulus

STRAIN ENERGY OF DEFORMATION:

In general, $\mathbf{U}=\int_{\mathbf{V}} \frac{\boldsymbol{\sigma}^{\mathbf{2}}}{2 \mathrm{E}} \mathrm{d} \mathbf{V}$

The expression for the strain energy in a three dimensional state of stress is given by
$\mathrm{U}=\frac{\mathbf{1}}{\mathbf{2}} \int_{\mathrm{V}}\left(\sigma_{\mathrm{xx}} \varepsilon_{\mathrm{xx}}+\sigma_{\mathrm{yy}} \varepsilon_{\mathrm{yy}}+\sigma_{\mathrm{zz}} \varepsilon_{\mathrm{zz}}+\tau_{\mathrm{xy}} \gamma_{\mathrm{xy}}+\tau_{\mathrm{xz}} \gamma_{\mathrm{xz}}+\tau_{\mathrm{yz}} \gamma_{\mathrm{yz}}\right) \mathrm{d} V$

STRAIN ENERGY OF DEFORMATION:

A steel rod has a square section of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ and a length of 2 m . Calculate the strain energy when a stress of 400 MPa is produced by stretching it. (Take E = 200 GPa.)

$$
U=\frac{\sigma^{2}}{2 \mathrm{E}} \times \text { Volume }=\frac{400 \times 400 \times 10^{12}}{2 \times 200 \times 10^{9}} \times 10^{-4} \times 2=80 \mathrm{~J}
$$

STRAIN ENERGY OF DEFORMATION:

2. Strain Energy due to Shear Stress:

Consider the a rectangular element subjected to shear as shown in fig. above. The height is ' h ' and the plan area is ' A '. It is distorted by a distance x due to shear force ' F '. The graph of force plotted against ' x ' is normally a straight line, so long as the material remains linearly elastic.

$$
\begin{aligned}
& \text { Area } \mathrm{A}=10 \times 10=100 \mathrm{~mm}^{2} \\
& =10^{-4} \mathrm{~m}^{2} \\
& \text { Length } \mathrm{L}=2 \mathrm{~m} \\
& \sigma=400 \times 10^{6} \mathrm{~Pa} \text {. } \\
& \mathrm{E}=200 \times 10^{9} \mathrm{~Pa} \text {. }
\end{aligned}
$$

STRAIN ENERGY OF DEFORMATION:

Strain energy stored, $U=\frac{1}{2} F x$
Shear Stress, $\tau=\frac{\mathrm{F}}{\mathrm{A}} \quad$ Shear Strain, $\gamma=\frac{\mathrm{x}}{\mathrm{h}} \quad \mathrm{x}=\gamma \cdot \mathrm{h}$
Strain Energy, $\mathrm{U}=\frac{1}{2} \tau \cdot \gamma$. A. $\mathrm{h}=\frac{1}{2} \tau \cdot \gamma$. Volume
Within the elastic limit, $\gamma=\frac{\tau}{\mathrm{G}}$
Strain Energy, $U=\frac{1}{2} \frac{\tau^{2}}{G} x$ Volume of the block
In general strain energy, $U=\int_{V} \frac{1}{2} \frac{\tau^{2}}{G} d V$

STRAIN ENERGY OF DEFORMATION:

Calculate the strain energy due to shear strain in the structure shown in fig $\quad G=90 \mathrm{GPa}$

Area $\mathrm{A}=\frac{\pi}{4} \times 120^{2} \times 10^{-6}=0.01131 \mathrm{~m}^{2}$
Volume, $V=0.01131 \times 0.5=5.6549 \times 10^{-3} \mathrm{~m}^{2}$
$\tau=\frac{\mathrm{F}}{\mathrm{A}}=\frac{5 \times 10^{3}}{0.01131}=442.09 \mathrm{kN} / \mathrm{m}^{2}$

Strain Energy, $U=\frac{1}{2} \frac{\tau^{2}}{G} x$ Volume

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{\left(442.09 \times 10^{3}\right)^{2}}{90 \times 10^{9}} \times 5.6549 \times 10^{-3} \\
& =6.14 \times 10^{-3} \text { Joules }
\end{aligned}
$$

STRAIN ENERGY OF DEFORMATION:

3. Strain Energy due to Bending

$$
\begin{aligned}
& U_{i}=\int_{V} U_{0} d V \\
&=\int_{V}\left(\frac{1}{2} \sigma \varepsilon\right)(d V) \\
&=\int_{V} \frac{1}{2}\left(\frac{\sigma^{2}}{E}\right) d V \\
&=\int_{V} \frac{1}{2 E}\left(\frac{M y}{I}\right)^{2} d V \\
&=\int_{V} \frac{1}{2 E}\left(\frac{M^{2} y^{2}}{I^{2}}\right) d V \\
&=\int_{L} \frac{1}{2 E}\left(\frac{M^{2}}{I^{2}}\right)\left(\int_{A} y^{2} d A\right) d x \\
&=\int_{L}\left(\frac{M^{2}}{2 E I}\right) d x
\end{aligned}
$$

Presented to S4 ME students of RSET by Dr. Manoj G Tharian

STRAIN ENERGY OF DEFORMATION:

3. Strain Energy due to Torsion

The relation between torque T and the angle of twist θ is normally a straight line. Work done is the area under the torque angle graph. Strain Energy stored is given by $\quad \mathbf{U}=\frac{\mathbf{1}}{\mathbf{2}} \cdot \mathbf{T} \cdot \theta$

STRAIN ENERGY OF DEFORMATION:

$$
\begin{aligned}
\frac{T}{I_{P}} & =\frac{\tau_{\max }}{R}=\frac{G \cdot \theta}{L} \quad I_{P} \text { - Polar Moment of Inertia } \\
\theta & =\frac{\mathrm{TL}}{\mathrm{GI}_{\mathrm{P}}} \quad \mathrm{~T}=\frac{\tau_{\mathrm{max}} \cdot \mathrm{I}_{\mathrm{P}}}{\mathrm{R}} \\
\mathbf{U}= & \frac{\mathbf{1}}{\mathbf{2}} \cdot \frac{\tau_{\mathrm{max}} \cdot \mathrm{I}_{\mathrm{P}}}{\mathrm{R}} \cdot \frac{\tau_{\max } \cdot \mathrm{I}_{\mathrm{P}}}{\mathrm{R}} \cdot \frac{\mathrm{~L}}{\mathrm{G} \cdot \mathrm{I}_{\mathrm{P}}} \\
\mathbf{U}= & \frac{\mathbf{1}}{\mathbf{2}} \frac{\tau_{\max ^{2} \cdot \pi \cdot \mathrm{R}^{4}}^{\mathrm{R}^{2} \mathrm{x} 2} \cdot \frac{\mathrm{~L}}{\mathrm{G}} \quad \mathbf{U}=\frac{\tau_{\max }^{2}}{4 \mathbf{G}} \mathbf{x} \text { Volume }}{} \\
& \text { In general Strain Energy } \mathbf{U}=\int_{\mathbf{V}} \frac{\boldsymbol{\tau}_{\max }}{4 \mathrm{G}} \mathbf{d V}
\end{aligned}
$$

STRAIN ENERGY OF DEFORMATION:

A solid bar is 20 mm diameter and 0.8 m long. It is subjected to a torque of $30 \mathrm{~N}-\mathrm{m}$. Calculate the maximum shear stress and strain energy stored. Take G $=90$ GPa.

Max Shear Stress, $\tau_{\text {max }}=\frac{\text { T.R }}{\mathrm{I}_{\mathrm{P}}}=19.1 \times 10^{-6} \mathrm{~Pa}$
$\mathrm{U}=\frac{\tau^{2}}{4 \mathrm{G}} \times$ Volume $=0.255$ Joules

STRAIN ENERGY OF DEFORMATION:

Strain Energy due to Axial Force

$$
U=\int_{V} \frac{\sigma^{2}}{2 E} d V
$$

Strain Energy due to Shear Force

$$
U=\int_{V} \frac{1}{2} \frac{\tau^{2}}{G} d V
$$

Strain Energy due to Torque

$$
U=\int_{V} \frac{\tau^{2}}{4 G} d V
$$

Strain Energy due to Bending Moment $\mathbf{U}=\int_{0}^{1} \frac{\mathbf{M}^{2}}{2 E I} \mathbf{d l}$

STRAIN ENERGY OF DEFORMATION:

$$
\begin{aligned}
& D_{2}=k_{21} F_{1} \\
& d_{2}=D_{2} \cos \theta=k_{21} \cos \theta F_{1} \\
& d_{2}=a_{21} F_{1}
\end{aligned}
$$

Influence Coefficient: The displacement at point 2 in a specified direction due to a force F_{1} applied at point 1 is proportional to F_{1}. The displacement produced at point 2 in a specified direction due to a unit force applied at point 1 is called influence coefficient a_{21}.

STRAIN ENERGY OF DEFORMATION:

Principle of Superposition: If several forces all having direction of F1 are applied simultaneously at 1 the resultant vertical deflection produced at 2 will be the resultant of deflection which they would have produced if applied separately. This is called principle of

superposition.

24th January 2019
Presented to S4 ME students of RSET by Dr. Manoj G Tharian

